Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.144
Filtrar
1.
J Mater Chem B ; 12(16): 3996-4003, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563677

RESUMO

Encapsulation of enzymes within porous materials has shown great promise for protecting enzymes from denaturation, increasing their tolerance to harsh environments and promoting their industrialization. However, controlling the conformational freedom of the encapsulated enzymes to enhance their catalytic performance remains a great challenge. To address this issue, herein, following immobilization of GOx and HRP on a thermo-responsive porous poly(styrene-maleic-anhydride-N-isopropylacrylamide) (PSMN) membrane, a GOx-HRP@PSMN@HZIF-8 composite was fabricated by encapsulating GOx-HRP@PSMN in hollow ZIF-8 (HZIF-8) with liposome (L) as the sacrificial template. The improved conformational freedom for enzymes arising from the hollow cavity formed in ZIF-8 through the removal of L enhanced the mass transfer and dramatically promoted the catalytic activity of the composite. Interestingly, at high temperature, the coiled PN moiety in PSMN provided the confinement effect for GOx-HRP, which also significantly boosted the catalytic performance of the composites. Compared to the maximum catalytic reaction rates (Vmax) of GOx-HRP@PSMN@LZIF-8, the free enzyme and GOx-HRP@ZIF-8, the Vmax of the GOx-HRP@PSMN@HZIF-8 composite exhibited an impressive 17.8-fold, 10.8-fold and 6.0-fold enhancement at 37 °C, respectively. The proposed composites successfully demonstrated their potential as catalytic platforms for the colorimetric detection of glucose in a cascade reaction. This study paves a new way for overcoming the current limitations of immobilizing enzymes in porous materials and the use of smart polymers for the potential fabrication of enzyme@polymer@MOF composites with tunable conformational freedom and confinement effect.


Assuntos
Enzimas Imobilizadas , Glucose Oxidase , Estruturas Metalorgânicas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Estruturas Metalorgânicas/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Polímeros/química , Propriedades de Superfície , Porosidade , Tamanho da Partícula , Catálise , Biocatálise , Poliestirenos/química
2.
Anal Chem ; 96(16): 6337-6346, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613479

RESUMO

The arsM gene is a critical biomarker for the potential risk of arsenic exposure in paddy soil. However, on-site screening of arsM is limited by the lack of high-throughput point-of-use (POU) methods. Here, a multiplex CRISPR/Cas12a microfluidic paper-based analytical device (µPAD) was constructed for the high-throughput POU analysis of arsM, with cascade amplification driven by coupling crRNA-enhanced Cas12a and horseradish peroxidase (HRP)-modified probes. First, seven crRNAs were designed to recognize arsM, and their LODs and background signal intensities were evaluated. Next, a step-by-step iterative approach was utilized to develop and optimize coupling systems, which improved the sensitivity 32 times and eliminated background signal interference. Then, ssDNA reporters modified with HRP were introduced to further lower the LOD to 16 fM, and the assay results were visible to the naked eye. A multiplex channel microfluidic paper-based chip was developed for the reaction integration and simultaneous detection of 32 samples and generated a recovery rate between 87.70 and 114.05%, simplifying the pretreatment procedures and achieving high-throughput POU analysis. Finally, arsM in Wanshan paddy soil was screened on site, and the arsM abundance ranged from 1.05 × 106 to 6.49 × 107 copies/g; this result was not affected by the environmental indicators detected in the study. Thus, a coupling crRNA-based cascade amplification method for analyzing arsM was constructed, and a microfluidic device was developed that contains many more channels than previous paper chips, greatly improving the analytical performance in paddy soil samples and providing a promising tool for the on-site screening of arsM at large scales.


Assuntos
Solo , Solo/química , Peroxidase do Rábano Silvestre/metabolismo , Peroxidase do Rábano Silvestre/química , Sistemas CRISPR-Cas , Oryza/química , Poluentes do Solo/análise , Dispositivos Lab-On-A-Chip , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico/métodos
3.
Anal Sci ; 40(5): 951-958, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38598048

RESUMO

Daily monitoring of serum uric acid levels is very important to provide appropriate treatment according to the constitution and lifestyle of individual hyperuricemic patients. We have developed a suspension-based assay to measure uric acid by adding a sample solution to the suspension containing micro-sized particles immobilized on uricase and horseradish peroxidase (HRP). In the proposed method, the mediator reaction of uricase, HRP, and uric acid produces resorufin from Amplex red. This resorufin is adsorbed onto enzyme-immobilized micro-sized particles simultaneously with its production, resulting in the red color of the micro-sized particles. The concentration of resorufin on the small surface area of the microscopic particles achieves a colorimetric analysis of uric acid with superior visibility. In addition, ethanol-induced desorption of resorufin allowed quantitative measurement of uric acid using a 96-well fluorescent microplate reader. The limit of detection (3σ) and RSD (n = 3) were estimated to be 2.2 × 10-2 µg/mL and ≤ 12.1%, respectively. This approach could also be applied to a portable fluorometer.


Assuntos
Colorimetria , Enzimas Imobilizadas , Fluorometria , Peroxidase do Rábano Silvestre , Urato Oxidase , Ácido Úrico , Ácido Úrico/sangue , Ácido Úrico/química , Ácido Úrico/análise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Urato Oxidase/química , Urato Oxidase/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Tamanho da Partícula , Humanos , Suspensões , Oxazinas/química
4.
Mikrochim Acta ; 191(4): 209, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499840

RESUMO

A novel colorimetric platform was designed for the determination of S. aureus by utilizing a dual-recognition strategy, where wheat germ agglutinin (WGA)-functionalized magnetic beads were served as separation elements to capture and enrich S. aureus efficiently from the matrix. Horseradish peroxidase (HRP) labeled chicken anti-protein A IgY (HRP-IgY) was used to label the captured S. aureus. A chicken IgY was introduced as a signal tracer to bind with staphylococcal protein A (SPA) on the surface of S. aureus, which can circumvent the interference from protein G-producing Streptococcus. Subsequently, the colorimetric signal was achieved by an HRP-catalyzed reaction, which was amplified by HRP-IgY bound by approximately 80,000 SPA molecules on one S. aureus. The entire detection process could be accomplished within 90 min. Under optimal conditions, the linear response of different S. aureus concentrations ranged from 7.8 × 102 to 2.0 × 105 CFU/mL and the limit of detection reached down to 3.9 × 102 CFU/mL. Some common non-target bacteria yielded negative results, indicating the excellent specificity of the method. The developed strategy was successfully applied to the determination of S. aureus in various types of samples with satisfactory recoveries. Therefore, the novel dual-recognition strategy possessed the advantages of high sensitivity, specificity, and low cost and exhibited considerable potential as a promising tool to defend public health.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Aglutininas do Germe de Trigo , Colorimetria/métodos , Imunoglobulinas , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Peroxidase do Rábano Silvestre/metabolismo
5.
J Am Chem Soc ; 146(12): 8228-8241, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38471004

RESUMO

It remains a tremendous challenge to explore effective therapeutic modalities against neuroblastoma, a lethal cancer of the sympathetic nervous system with poor prognosis and disappointing treatment outcomes. Considering the limitations of conventional treatment modalities and the intrinsic vulnerability of neuroblastoma, we herein develop a pioneering sequential catalytic therapeutic system that utilizes lactate oxidase (LOx)/horseradish peroxidase (HRP)-loaded amorphous zinc metal-organic framework, named LOx/HRP-aZIF, in combination with a 3-indole-acetic acid (IAA) prodrug. On the basis of abnormal lactate accumulation that occurs in the tumor microenvironment, the cascade reaction of LOx and HRP consumes endogenous glutathione and a reduced form of nicotinamide adenine dinucleotide to achieve the first stage of killing cancer cells via antioxidative incapacitation and electron transport chain interference. Furthermore, the generation of reactive oxygen species induced by HRP and IAA through bioorthogonal catalysis promotes ferritin degradation and lipid peroxidation, ultimately provoking self-enhanced ferroptosis with positive feedback by initiating an endogenous Fenton reaction. This work highlights the superiority of the natural enzyme-dependent cascade and bioorthogonal catalytic reaction, offering a paradigm for synergistically enzyme-based metabolism-ferroptosis anticancer therapy.


Assuntos
Ferroptose , Neoplasias , Neuroblastoma , Humanos , Antioxidantes/farmacologia , Peroxidase do Rábano Silvestre/metabolismo , Catálise , Linhagem Celular Tumoral , Microambiente Tumoral
6.
Sci Rep ; 14(1): 1362, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228654

RESUMO

Chia gum's molecular structure with distinctive properties as well as the alginate-based hydrogel's three-dimensionally cross-linked structure can provide a potent matrix for immobilization of enzyme. Herein, chia gum (CG)/alginate (A)-polymeric complex was synthesized and employed as a support material for the immobilization of horseradish peroxidase (HRP). HRP was successfully immobilized on the developed ACG-polymeric support, and the highest immobilization recovery (75%) was observed at 1.0% CG and 2% A, pH 7.0, and 50 units of the enzyme. The structure, morphology, and thermal properties of the prepared ACG-HRP were demonstrated using Fourier Transform Infrared (FTIR), Scanning Electron Microscope, and Thermogravimetric (TGA) analyses. ACG-HRP showed a good reusability (60%) over ten reuses. The immobilized ACG-HRP displayed an acidic pH optimum (6.0), a higher temperature optimum (50 °C), and improved thermal stability (30-50 °C) compared to the soluble HRP at pH 7.0, 40 °C and (30-40 °C), respectively. ACG-HRP has a lower affinity for hydrogen peroxide (H2O2) and guaiacol and a higher oxidizing affinity for a number of phenolic substrates. The ACG-HRP demonstrated greater resistance to heavy metals, isopropanol, urea, Triton X-100, and urea, as well as improved efficiency for eliminating phenol and p-chlorophenol. The developed ACG-polymeric support provided improved enzyme properties, allowed the reuse of the immobilized HRP in 10 cycles, and made it promising for several biotechnological applications.


Assuntos
Enzimas Imobilizadas , Polímeros , Enzimas Imobilizadas/química , Estabilidade Enzimática , Temperatura , Peroxidase do Rábano Silvestre/metabolismo , Peróxido de Hidrogênio , Fenol , Ureia , Concentração de Íons de Hidrogênio
7.
Cold Spring Harb Protoc ; 2024(2): pdb.prot107805, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36922000

RESUMO

Precisely where and when a given gene is expressed is crucial for our understanding of developmental and cell biology but determining this is often constrained by detection limits. Here, we describe a technique for visualization of low-copy mRNA in Nothobranchius furzeri embryos using tyramide signal amplification (TSA). In this protocol, an anti-sense digoxigenin-labeled RNA probe is hybridized to mRNA in situ. Anti-digoxigenin antibodies conjugated to horseradish peroxidase (POD) are then bound to the probe and reacted with fluorescently labeled tyramide. Combining this method with a counterstain, such as DAPI, allows for the detection of mRNA at a single-cell resolution.


Assuntos
Peixes Listrados , RNA Antissenso , Hibridização in Situ Fluorescente/métodos , RNA Mensageiro/metabolismo , Peroxidase do Rábano Silvestre/metabolismo
8.
Chemosphere ; 349: 140803, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040249

RESUMO

The deteriorating environmental conditions due to increasing emerging recalcitrant pollutants raised a severe concern for its remediation. In this study, we have reported antibiotic degradation using free and immobilized HRP. The functionalized cellulose support was utilized for efficient immobilization of HRP. Approximately 13.32 ± 0.52 mg/g enzyme loading was achieved with >99% immobilization efficiency. The higher percentage of immobilization is attributed to the higher surface area and carboxylic groups on the support. The kinetic parameter of immobilized enzymes was Km = 2.99 mM/L for CNF-CA@HRP, which is 3.5-fold more than the Michaelis constant (Km = 0.84794 mM/L) for free HRP. The Vmax of CNF-CA@HRP bioconjugate was 2.36072 mM/min and 0.558254 mM/min for free HRP. The highest degradation of 50, 54.3, and 97% were achieved with enzymatic, sonolysis, and sono-enzymatic with CNF-CA@HRP bioconjugate, respectively. The reaction kinetics analysis revealed that applying ultrasound with an enzymatic process could enhance the reaction rate by 2.7-8.4 times compared to the conventional enzymatic process. Also, ultrasound changes the reaction from diffusion mode to the kinetic regime with a more oriented and fruitful collision between the molecules. The thermodynamic analysis suggested that the system was endothermic and spontaneous. While LC-MS analysis and OTC's degradation mechanism suggest, it mainly involves hydroxylation, secondary alcohol oxidation, dehydration, and decarbonylation. Additionally, the toxicity test confirmed that the sono-enzymatic process helps toward achieving complete mineralization. Further, the reusability of bioconjugate shows that immobilized enzymes are more efficient than the free enzyme.


Assuntos
Celulose , Enzimas Imobilizadas , Enzimas Imobilizadas/metabolismo , Estabilidade Enzimática , Biodegradação Ambiental , Antibacterianos , Peroxidase do Rábano Silvestre/metabolismo , Temperatura , Termodinâmica , Cinética , Concentração de Íons de Hidrogênio
9.
J Inorg Biochem ; 250: 112394, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37864880

RESUMO

Bio-enzymes have the advantages of strong substrate specificity, high catalytic efficiency, and minimal toxic side effects, making them promising drugs in cancer therapy. However, the poor stability and cellular penetrability of uncoated protein in the physiological environment severely restricts the direct application of Bio-enzyme. To address it, we report a metal-organic framework (MOF), Hf-DBA (H2DBA, biphenyl carboxylic acid ligands). The morphology of the Hf-DBA was revealed by TEM and the diameter was in the range of 200 to 350 nm. Hf-DBA acted a carrier for intracellular delivery and protection of horseradish peroxidase (HRP). The prepared HRP@Hf-DBA can catalyze the excess H2O2 in the tumor cells to generation of •OH for chemodynamic therapy (CDT). Compared with free HRP, the catalytic activity of HRP@Hf-DBA is significantly improved, and the optimal catalytic conditions are explored. The catalytic stability of HRP@Hf-DBA remained above 70% after 12 cycles of catalysis. After treatment with HRP@Hf-DBA, the apoptosis rates of A549 and Hela cells was 71.64%, and 76.86%. The results in vitro show that HRP@Hf-DBA can effectively inhibit the growth of tumor cells through enhanced CDT.


Assuntos
Enzimas Imobilizadas , Estruturas Metalorgânicas , Humanos , Peroxidase do Rábano Silvestre/metabolismo , Estabilidade Enzimática , Estruturas Metalorgânicas/farmacologia , Peróxido de Hidrogênio , Células HeLa
10.
Nanoscale ; 15(48): 19486-19492, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38051112

RESUMO

Through the innovative use of surface-displayed horseradish peroxidase, this work explores the enzymatic catalysis of both bioRAFT polymerization and bioATRP to prompt polymer synthesis on the surface of Saccharomyces cerevisiae cells, with bioATRP outperforming bioRAFT polymerization. The resulting surface modification of living yeast cells with synthetic polymers allows for a significant change in yeast phenotype, including growth profile, aggregation characteristics, and conjugation of non-native enzymes to the clickable polymers on the cell surface, opening new avenues in bioorthogonal cell-surface engineering.


Assuntos
Polímeros , Saccharomyces cerevisiae , Polimerização , Saccharomyces cerevisiae/metabolismo , Catálise , Peroxidase do Rábano Silvestre/metabolismo
11.
Anal Chem ; 95(48): 17798-17807, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37976298

RESUMO

The difficulty in elucidating the microenvironment of extracellular H2O2 efflux has led to the lack of a critical extracellular link in studies of the mechanisms of redox signaling pathways. Herein, we mounted horseradish peroxidase (HRP) to glycans expressed globally on the living cell surface and constructed an interception proximity labeling (IPL) platform for H2O2 efflux. The release of endogenous H2O2 is used as a "physiological switch" for HRP to enable proximity labeling. Using this platform, we visualize the oxidative stress state of tumor cells under the condition of nutrient withdrawal, as well as that of macrophages exposed to nonparticulate stimuli. Furthermore, in combination with a proteomics technique, we identify candidate proteins at the invasion interface between fungal mimics (zymosan) and macrophages by interception labeling of locally accumulated H2O2 and confirm that Toll-like receptor 2 binds zymosan in a glycan-dependent manner. The IPL platform has great potential to elucidate the mechanisms underlying biological processes involving redox pathways.


Assuntos
Peróxido de Hidrogênio , Transdução de Sinais , Peróxido de Hidrogênio/metabolismo , Zimosan , Peroxidase do Rábano Silvestre/metabolismo , Oxirredução
12.
Int J Biol Macromol ; 253(Pt 7): 127239, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838127

RESUMO

A novel immobilized enzyme driven by visible light was prepared and used for complete mineralization of antibiotics in water bodies. The immobilized enzyme was composed of carbon nitride modified by biochar (C/CN) and horseradish peroxidase (HRP), establishing the photo-enzyme coupling system with synergistic effect. Among them, the introduction of biochar not only improves the stability and loading capacity of the enzyme, but also improves the light absorption capacity and carrier separation efficiency of the photocatalyst. After the optimization of immobilization process, the solid load of HRP could reach 251.03 mg/g, and 85.03 % enzyme activity was retained after 18 days of storage at 4 °C. In the sulfadiazine (SDZ) degradation experiment, the degradation rate of HRP/C3/CN reached 71.21 % within 60 min, which was much higher than that of HRP (2.33 %), CN (49.78 %) and C3/CN (58.85 %). In addition, under the degradation of HRP/C/CN, the total organic carbon (TOC) removal rate of SDZ reached 53.14 %, which was 6.47 and 1.74 times that of CN and C3/CN, respectively. This study shows that the introduction of biochar is of great significance to the photo-enzyme cascade coupling system and provides a new strategy for the application of HRP&g-C3N4 system in wastewater treatment.


Assuntos
Enzimas Imobilizadas , Água , Enzimas Imobilizadas/metabolismo , Sulfadiazina , Peroxidase do Rábano Silvestre/metabolismo , Luz
13.
Carbohydr Res ; 533: 108938, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37713734

RESUMO

The development of human tissue models for regenerative medicine and animal-free drug screening requires glycosylated biomaterials such as collagen. An easy and fast biomaterial glycosylation method exploiting Horseradish Peroxidase (HRP) phenol coupling reaction is proposed. The protocol is adaptable to any polymer functionalized with phenol residues or tyrosine containing proteins. As a model the tyrosine residues on collagen films were functionalized with salidroside, a natural ß-glucoside with a phenol in the aglycone. Scanning Electron Microscope (SEM) and contact angle analysis revealed the influence of glycosylation on the sample's morphology and wettability. Preliminary biological evaluation showed the cytocompatibility of the glucosylated collagen films.


Assuntos
Fenóis , Tirosina , Humanos , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Fenol , Colágeno
14.
Anal Sci ; 39(12): 2059-2065, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37704924

RESUMO

The enzyme-linked immunosorbent assay (ELISA) offers several advantages, including simple operation, high throughput, and low cost, making it an ideal immunoassay method for efficient screening of disease-related biomarkers in clinical samples. However, the traditional colorimetric ELISA has relatively low sensitivity, which promotes the continuous emergence of various novel signal amplification technologies. In this work, we fused the AFP-specific nanobody (A1) with the streptavidin-binding peptide (SBP) to develop a fusion protein (A1-SBP) as biorecognition element in a colorimetric ELISA for detecting AFP. Besides, to further improve the sensitivity of the traditional colorimetric ELISA, the streptavidin-conjugated polymerized horseradish peroxidase (SA-PolyHRP) were selected as a detection probe for signal amplification. The proposed signal enhancement strategy demonstrated a limit of detection (LOD) of 0.597 ng/mL for the SA-polyHRP-based ELISA, which is 7.67-fold lower than that of the traditional SA-HRP-based ELISA without additional steps. Furthermore, the proposed SA-polyHRP-based ELISA showed a good correlation with the detection of clinical samples using the Roche E601 chemiluminescence immunoassay analyzer. Therefore, the proposed signal enhancement strategy is an attractive approach for improving the sensitivity of immunoassay without requiring additional steps.


Assuntos
alfa-Fetoproteínas , Estreptavidina , alfa-Fetoproteínas/análise , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática , Peroxidase do Rábano Silvestre/metabolismo
15.
Bioconjug Chem ; 34(10): 1719-1726, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37767911

RESUMO

Lipid raft-specific glycosylation has been implicated in many biological processes, including intracellular trafficking, cell adhesion, signal transduction, and host-pathogen interactions. The major predicament in lipid raft-specific glycosylation research is the unavailability of tools for tracking and manipulating glycans on lipid rafts at the microstructural level. To overcome this challenge, we developed a multifunctional proximity labeling (MPL) platform that relies on cholera toxin B subunit to localize horseradish peroxidase on lipid rafts. In addition to the prevailing electron-rich amino acids, modified sialic acid was included in the horseradish peroxidase-mediated proximity labeling substrate via purposefully designed chemical transformation reactions. In combination with sialic acid editing, the self-renewal of lipid raft-specific sialic acid was visualized. The MPL method enabled tracking of lipid raft dynamics under methyl-ß-cyclodextrin and mevinolin treatments; in particular, the alteration of lipid rafts markedly affected cell migration. Furthermore, we embedded functional molecules into the method and implemented raft-specific sialic acid gradient engineering. Our novel strategy presents opportunities for tailoring lipid raft-specific sialic acids, thereby regulating interactions associated with lipid raft regions (such as cell-virus and cell-microenvironment interactions), and can aid in the development of lipid raft-based therapeutic regimens for tumors.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Movimento Celular , Ácidos Siálicos/metabolismo , Microdomínios da Membrana/metabolismo , Peroxidase do Rábano Silvestre/metabolismo
16.
J Hazard Mater ; 459: 132261, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37572608

RESUMO

Efficient enzyme immobilization is crucial for the successful commercialization of large-scale enzymatic water treatment. However, issues such as lack of high enzyme loading coupled with enzyme leaching present challenges for the widespread adoption of immobilized enzyme systems. The present study describes the development and bioremediation application of an enzyme biocomposite employing a cationic macrocycle-based covalent organic framework (COF) with hierarchical porosity for the immobilization of horseradish peroxidase (HRP). The intrinsic hierarchical porous features of the azacalix[4]arene-based COF (ACA-COF) allowed for a maximum HRP loading capacity of 0.76 mg/mg COF with low enzyme leaching (<5.0 %). The biocomposite, HRP@ACA-COF, exhibited exceptional thermal stability (∼200 % higher relative activity than the free enzyme), and maintained ∼60 % enzyme activity after five cycles. LCMSMS analyses confirmed that the HRP@ACA-COF system was able to achieve > 99 % degradation of seven diverse types of emerging pollutants (2-mercaptobenzothiazole, paracetamol, caffeic acid, methylparaben, furosemide, sulfamethoxazole, and salicylic acid)in under an hour. The described enzyme-COF system offers promise for efficient wastewater bioremediation applications.


Assuntos
Estruturas Metalorgânicas , Porosidade , Enzimas Imobilizadas/metabolismo , Catálise , Biodegradação Ambiental , Peroxidase do Rábano Silvestre/metabolismo
17.
Mikrochim Acta ; 190(8): 322, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491600

RESUMO

A simple and wash-free POCT platform based on microcapillary was developed, using breast cancer cell-derived exosomes as a model. This method adopted the "one suction and one extrusion" mode. The hybridized complex of epithelial cell adhesion molecule (EpCAM) aptamer and complementary DNA-horseradish peroxidase conjugate (CDNA-HRP) was pre-modified on the microcapillary's inner surface. "One suction" meant inhaling the sample into the functionalized microcapillary. The exosomes could specifically bind with the EpCAM aptamer on the microcapillary's inner wall, and then the CDNA-HRP complex was released. "One extrusion" referred to squeezing the shedding CDNA-HRP into the 3,3',5,5'-tetramethylbenzidine (TMB)/H2O2 solution, and then the enzyme-catalyzed reaction would occur to make the solution yellow using sulfuric acid as the terminator. Therefore, exosome detection could be realized. The limit of detection was 2.69 × 104 particles mL-1 and the signal value had excellent linearity in the concentration range from 2.75 × 104 to 2.75 × 108 particles⋅mL-1 exosomes. In addition, the wash-free POCT platform also displayed a favorable reproducibility (RSD = 2.9%) in exosome detection. This method could effectively differentiate breast cancer patients from healthy donors. This work provided an easy-to-operate method for detecting cancer-derived exosomes without complex cleaning steps, which is expected to be applied to breast cancer screening.


Assuntos
Neoplasias da Mama , Exossomos , Humanos , Feminino , Neoplasias da Mama/diagnóstico , DNA Complementar/metabolismo , Exossomos/metabolismo , Peróxido de Hidrogênio/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Reprodutibilidade dos Testes , Sucção , Peroxidase do Rábano Silvestre/metabolismo
18.
Colloids Surf B Biointerfaces ; 229: 113443, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37437412

RESUMO

The multienzyme co-immobilization systems with high cascade catalytic efficiency and selectivity have attracted considerable attention. In this study, through DNA-directed immobilization (DDI) technology, two model enzymes, glucose oxidase (GOD) and horseradish peroxide (HRP) were co-immobilized on the multifunctional silica nanoparticles (DDI enzyme). In addition to the directional distribution promoted by DNA complementary chains, the multienzyme system allowed the control of the stoichiometric ratio of the enzymes by adjusting the ratio of amino/carboxyl groups. The optimal mole ratio of GOD/HRP was 1:2, while the protein loading amount could reach 8.06 mg·g-1. Compared with the conventional direct adsorption, the catalytic activity of the DDI enzyme was 2.49 times higher. Moreover, with the enhancement of thermal and mechanical stability, the DDI enzyme could still retain at least 50% of its initial activity after 12 cycles. Accompanied by an excellent response and good selectivity, the constructed multienzyme systems simultaneously showed the potential as a glucose detector. Therefore, based on the DDI technology, the highly efficient multienzyme co-immobilization system could be further extended for a wider range of research fields.


Assuntos
Enzimas Imobilizadas , Nanopartículas , Enzimas Imobilizadas/metabolismo , Glucose , Glucose Oxidase/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , DNA
19.
Mikrochim Acta ; 190(8): 314, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474872

RESUMO

A novel dual-amplification system based on CRISPR-Cas12a and horseradish peroxidase (HRP) was developed for colorimetric determination of MC-LR. This dual-amplification was accomplished by combining the nuclease activity of CRISPR-Cas12a with the redox activity of HRP. HRP linked to magnetic beads through an ssDNA (MB-ssDNA-HRP) was used to induce a color change of the 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2 chromogenic substrate solution. Specific binding of MC-LR with its aptamer initiated the release of a complementary DNA (cDNA), which was designed to activate the trans-cleavage activity of CRISPR-Cas12a. Upon activation, Cas12a cut the ssDNA linker in MB-ssDNA-HRP, causing a reduction of HRP on the magnetic beads. Consequently, the UV-Vis absorbance of the HRP-catalyzed reaction was decreased. The dual-signal amplification facilitated by CRISPR-Cas12a and HRP enabled the colorimetric detection of MC-LR in the range 0.01 to 50 ng·mL-1 with a limit of detection (LOD) of 4.53 pg·mL-1. The practicability of the developed colorimetric method was demonstrated by detecting different levels of MC-LR in spiked real water samples. The recoveries ranged from 86.2 to 118.5% and the relative standard deviation (RSD) was 8.4 to 17.6%. This work provides new inspiration for the construction of effective signal amplification platforms and demonstrates a simple and user-friendly colorimetric method for determination of trace MC-LR.


Assuntos
Sistemas CRISPR-Cas , Colorimetria , Microesferas , Peroxidase do Rábano Silvestre/metabolismo , Colorimetria/métodos , Peróxido de Hidrogênio/metabolismo , DNA Complementar , Fenômenos Magnéticos
20.
Talanta ; 263: 124700, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37247452

RESUMO

Immunosorbent assay is one of the most popular immunological screening techniques which has been widely used for the clinical diagnosis of alpha-fetoprotein (AFP). While traditional immunosorbent assay (ELISA) suffers from low detection sensitivity due to its low intensity of colorimetric signal. To improve the sensitivity of AFP detection, we developed a new and sensitive immunocolorimetric biosensor by combining Ps-Pt nanozyme with terminal deoxynucleotidyl transferase (TdT)-mediated polymerization reaction. The determination of AFP was achieved by measuring the visual color intensity produced by the catalytic oxidation reaction of the 3,3',5,5'-tetramethylbenzidine (TMB) solution with Ps-Pt and horseradish peroxidase (HRP). Owing to the synergistic catalysis of Ps-Pt and horseradish peroxidase HRP enriched in polymerized amplification products, this biosensor exhibited a significant color change within 25 s in the presence of 10-500 pg/mL AFP. This proposed method allowed for the specific detection of AFP with a detection limit of 4.30 pg/mL and even 10 pg/mL target protein could be distinguished clearly by visual observation. Furthermore, this biosensor could be applied to analysis of AFP in the complex sample and could be easily extended to the detection of other proteins.


Assuntos
Técnicas Biossensoriais , alfa-Fetoproteínas , alfa-Fetoproteínas/análise , Colorimetria/métodos , Imunoadsorventes , Peroxidase do Rábano Silvestre/metabolismo , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...